organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Methylanilinium chloride monohydrate

Meriem Benslimane,^a Hocine Merazig,^a Sofiane Bouacida,^b* Sabrina Denbri,^a Adel Beghidja^a and Lahcène Ouahab^c

^aLaboratoire de Chimie Moléculaire, du Contrôle de l'Environnement et des Mesures Physico-chimiques, Faculté des Sciences Exactes, Département de Chimie, Université Mentouri, Constantine 25000, Algeria, ^bDépartement de Chimie, Faculté des Sciences et Sciences de l'Ingénieur, Université A. Mira de Béjaia, Route Targua Ouzmour 06000 Béjaia, Algeria, and ^cOrganometallics and Molecular Materials, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes, France Correspondence e-mail: bouacida_sofiane@yahoo.fr

Received 13 July 2007; accepted 30 July 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.040; wR factor = 0.141; data-to-parameter ratio = 15.1.

The asymmetric unit of the title compound, $C_7H_{10}N^+ \cdot Cl^- \cdot H_2O$, contains a 2-methylanilinium cation, a chloride anion and one molecule of water. The crystal structure consists of alternating layers of hydrophobic and hydrophilic zones of *o*-toluidine along the *c* axis. The water molecules and the chloride anions are sandwiched between these layers. A large number of cation–anion, cation–water and water–anion hydrogen bonds result in a two-dimensional network which reinforces the cohesion of the ionic structure.

Related literature

For related literature, see: Benali-Cherif *et al.* (2007); Bouacida *et al.* (2005*a,b,c*, 2006, 2007); Fábry *et al.* (2002); Hill (1998); Kagan *et al.* (1999); Koutselas *et al.* (1996); Mayer *et al.* (1999); Mazeaud *et al.* (2000); Mitzi *et al.* (1998); Muthamizhchelvan *et al.* (2005); Raptopoulou *et al.* (2002).

b = 7.4046 (4) Å

c = 14.7415 (5) Å

V = 890.78 (8) Å³

 $\beta = 94.600 \ (4)^{\circ}$

Experimental

Crystal data $C_7H_{10}N^+ \cdot Cl^- \cdot H_2O$ $M_r = 161.63$ Monoclinic, $P2_1/c$ a = 8.1871 (5) Å Z = 4Mo $K\alpha$ radiation $\mu = 0.37 \text{ mm}^{-1}$

Data collection

Nonius KappaCCD diffractometer1508 independent reflectionsAbsorption correction: none1203 reflections with $I > 2\sigma(I)$ 2895 measured reflections $R_{int} = 0.016$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.040 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.141 & \text{independent and constrained} \\ S &= 1.11 & \text{refinement} \\ 1508 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.27 \text{ e } \text{\AA}^{-3} \\ 100 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.19 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1Hydrogen-bond geometry (Å, $^{\circ}$).

 $D - H \cdot \cdot \cdot A$ $D - \mathbf{H} \cdot \cdot \cdot A$ D - H $H \cdot \cdot \cdot A$ $D \cdots A$ $N1\!-\!H1A\!\cdots\!Cl1^i$ 0.89 2.29 3.1736 (18) 170 $N1 - H1B \cdot \cdot \cdot Cl1^{ii}$ 0.89 2.39 3.2015 (17) 152 $N1 - H1C \cdots O1W$ 2.704 (3) 0.89 1.82 175 $O1W-H1W\cdots Cl1$ 0.72(3)2.45(2)3.167 (2) 177.9 (14) O1W-H2W···Cl1ⁱⁱ 0.76 (3) 2.42 (3) 3.141 (2) 161 (3) $x, -y + \frac{1}{2}, z + \frac{1}{2};$ Symmetry codes: (i) (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2};$ (iii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *SCALEPACK* and *DENZO* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2003); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg & Berndt, 2001); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work was supported by Mentouri-Constantine University, Algeria.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2263).

References

- Benali-Cherif, N., Kateb, A., Boussekine, H., Boutobba, Z. & Messai, A. (2007). Acta Cryst. E63, 03251.
- Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005a). Acta Cryst. E61, m2072-m2074.
- Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005b). Acta Cryst. E61, m577-m579.
- Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005c). *Acta Cryst.* E**61**, m1153–m1155.
- Bouacida, S., Merazig, H. & Benard-Rocherulle, P. (2006). Acta Cryst. E62, 0838–0840.
- Bouacida, S., Merazig, H., Benard-Rocherulle, P. & Rizzoli, C. (2007). Acta Cryst. E63, m379-m381.
- Brandenburg, K. & Berndt, M. (2001). *DIAMOND*. Version 3.1e. Crystal Impact GbR, Bonn, Germany.
- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.

Fábry, J., Krupková, R. & Studnička, V. (2002). Acta Cryst. E58, o105–o107.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

- Hill, C. L. (1998). Chem. Rev. 98, 1–2.
- Hill, C. L. (1998). Chem. Rev. 98, 1–2.
- Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. (1999). Science, 286, 945–947.

T = 173 (2) K $0.10 \times 0.08 \times 0.06$ mm Koutselas, I. B., Ducasse, L. & Papavassiliou, G. C. (1996). J. Phys. Condens. Matter, 8, 1217-1227.

Mayer, C. R., Herson, P. & Thouvenot, R. (1999). Inorg. Chem. 38, 6152-6158. Mazeaud, A., Dromzee, Y. & Thouvenot, R. (2000). Inorg. Chem. 39, 4735-4740.

- Mitzi, D. B., Liang, K. & Wang, S. (1998). *Inorg. Chem.* **37**, 321–327. Muthamizhchelvan, C., Saminathan, K., Fraanje, J., Peschar, R. & Sivakumar, K. (2005). Acta Cryst. E61, o1153-o1155.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
- Raptopoulou, C. P., Terzis, A., Mousdis, G. A. & Papavassiliou, G. C. (2002). Z. Naturforsch. Teil B, 57, 645-650.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o3682-o3683 [doi:10.1107/S1600536807037117]

2-Methylanilinium chloride monohydrate

M. Benslimane, H. Merazig, S. Bouacida, S. Denbri, A. Beghidja and L. Ouahab

Comment

Organic–inorganic hybrid materials have attracted a great deal of attention over the past few decades (Koutselas *et al.*, 1996; Mitzi *et al.*, 1998; Mayer *et al.*, 1999; Mazeaud *et al.*, 2000) because of their ionic, electrical, magnetic and optical properties (Hill, 1998; Kagan *et al.*, 1999; Raptopoulou *et al.*, 2002).

The methylanilinium is already reported with nitrate (Benali-Cherif *et al.*, 2007), picrate (Muthamizhchelvan *et al.*, 2005) and dihydrogenphosphate (Fábry *et al.*, 2002).

In the course of our ongoing program related to the synthesis and structural study of hybrid compounds based on tin and amines (Bouacida *et al.*, 2007; Bouacida *et al.*, 2006; Bouacida *et al.*, 2005*a*; Bouacida *et al.*, 2005*b*; Bouacida *et al.*, 2005*c*), we report here the synthesis and crystal structure of 2-Methylanilinium chloride monohydrate, (I).

The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The asymmetric unit of the title compound consist of a2-methylanilinium cation, a chloride anion and one molecule of water. The crystal structure consists of alternating layers of 2-methylanilinium. The chloride ions and water molecules are sandwiched between layers of hydrophobic and hydrophilic zones of 2-methylanilinium(Fig. 2). In this structure, three types of classical hydrogen bonds are observed, *viz*.cation–anion, cation–water and water-anion, with the N atom of the cation and O of water acting as donors (Fig.3, Table 1).

Experimental

Crystals were grown from aqueous solutions that were obtained by dissolving 1 mmol SnCl₂·2H₂O, 2 mmol 2-methylaniline in hydrochloric acid. The solutions were slowly evaporated to dryness for a couple of weeks. Some red crystals were carefully isolated under polarizing microscope for analysis by X-ray diffraction.

Refinement

All H atoms were localized in Fourier maps but introduced in calculated positions and treated as riding on their parent C and N atoms with C—H = 0.93-0.96Å and N—H = 0.89Å and $U_{iso}(H) = 1.2-1.5$ (carrier atom), except for H1W and H2W were located in a difference Fourier map and refined isotropically.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2. The packing of (I), viewed down the C axis, showing layers of molecule.

Fig. 3. A view of the ionic stacking, showing the hydrogen bonds as dashed lines.

2-Methylanilinium chloride monohydrate

Crystal data	
$C_7H_{10}N^+ \cdot Cl^- \cdot H_2O$	$F_{000} = 344$
$M_r = 161.63$	$D_{\rm x} = 1.205 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 5072 reflections
a = 8.1871 (5) Å	$\theta = 1.0-25.0^{\circ}$
b = 7.4046 (4) Å	$\mu = 0.37 \text{ mm}^{-1}$
c = 14.7415 (5) Å	T = 173 (2) K
$\beta = 94.600 \ (4)^{\circ}$	Prism, red
$V = 890.78 (8) \text{ Å}^3$	$0.10\times0.08\times0.06~mm$
Z = 4	

Data collection

Nonius KappaCCD diffractometer	1203 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.016$
T = 100(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.5^{\circ}$
Absorption correction: none	$h = -9 \rightarrow 9$
2895 measured reflections	$k = -8 \rightarrow 8$
1508 independent reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.040$	$w = 1/[\sigma^2(F_o^2) + (0.0907P)^2 + 0.0493P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.141$	$(\Delta/\sigma)_{\text{max}} = 0.001$
<i>S</i> = 1.11	$\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$
1508 reflections	$\Delta \rho_{\text{min}} = -0.19 \text{ e } \text{\AA}^{-3}$
100 parameters	Extinction correction: SHELXL97, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.116 (18)

Secondary atom site location: difference Fourier map

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.2974 (2)	0.3362 (2)	0.44034 (12)	0.0545 (6)
C1	0.1203 (3)	0.3087 (3)	0.44239 (15)	0.0524 (7)
C2	0.0621 (3)	0.2488 (3)	0.52207 (15)	0.0606 (8)
C3	-0.1035 (3)	0.2160 (4)	0.5250 (2)	0.0759 (10)
C4	-0.2066 (3)	0.2427 (4)	0.4493 (2)	0.0818 (11)
C5	-0.1480 (4)	0.3034 (4)	0.3699 (2)	0.0791 (11)
C6	0.0189 (3)	0.3381 (3)	0.36395 (16)	0.0643 (9)
C7	0.0874 (4)	0.4069 (5)	0.27810 (17)	0.0932 (11)
O1W	0.4013 (3)	0.0788 (3)	0.32831 (14)	0.0917 (9)
Cl1	0.50523 (7)	0.17364 (8)	0.13149 (3)	0.0628 (3)
H1A	0.34565	0.32473	0.49634	0.0817*
H1B	0.31628	0.44633	0.41937	0.0817*
H1C	0.33783	0.25419	0.40409	0.0817*
H2	0.13360	0.23052	0.57350	0.0727*
H3	-0.14423	0.17583	0.57859	0.0910*
H4	-0.31794	0.21978	0.45120	0.0981*

supplementary materials

Н5	-0.22082	0.32174	0.31904	0.0949*
H7A	0.14965	0.51482	0.29157	0.1397*
H7B	-0.00103	0.43297	0.23328	0.1397*
H7C	0.15715	0.31644	0.25498	0.1397*
H1W	0.424 (3)	0.098 (3)	0.2830 (17)	0.0500*
H2W	0.442 (3)	-0.008 (4)	0.3448 (16)	0.0500*
H7C H1W H2W	0.15715 0.424 (3) 0.442 (3)	0.31644 0.098 (3) -0.008 (4)	0.25498 0.2830 (17) 0.3448 (16)	0.1397 0.0500 0.0500

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
N1	0.0624 (12)	0.0549 (11)	0.0463 (10)	0.0004 (8)	0.0053 (8)	-0.0004 (7)
C1	0.0586 (13)	0.0458 (12)	0.0527 (12)	0.0065 (9)	0.0035 (9)	-0.0069 (8)
C2	0.0653 (15)	0.0590 (14)	0.0581 (13)	0.0029 (11)	0.0096 (10)	-0.0041 (10)
C3	0.0702 (18)	0.0810 (18)	0.0789 (18)	-0.0004 (13)	0.0212 (13)	-0.0104 (13)
C4	0.0610 (16)	0.088 (2)	0.097 (2)	0.0064 (14)	0.0095 (14)	-0.0251 (16)
C5	0.0688 (17)	0.0814 (19)	0.0839 (19)	0.0181 (13)	-0.0132 (14)	-0.0224 (13)
C6	0.0764 (17)	0.0592 (14)	0.0559 (14)	0.0133 (11)	-0.0042 (11)	-0.0084 (9)
C7	0.117 (2)	0.104 (2)	0.0556 (16)	0.0058 (19)	-0.0109 (14)	0.0130 (14)
O1W	0.142 (2)	0.0740 (13)	0.0642 (12)	0.0295 (13)	0.0406 (12)	0.0094 (10)
C11	0.0757 (5)	0.0641 (5)	0.0492 (4)	0.0006 (3)	0.0085 (3)	-0.0042 (2)

Geometric parameters (Å, °)

O1W—H1W	0.72 (3)	C4—C5	1.376 (4)
O1W—H2W	0.76 (3)	C5—C6	1.400 (4)
N1—C1	1.467 (3)	C6—C7	1.513 (4)
N1—H1B	0.8900	С2—Н2	0.9300
N1—H1A	0.8900	С3—Н3	0.9300
N1—H1C	0.8900	C4—H4	0.9300
C1—C2	1.376 (3)	С5—Н5	0.9300
C1—C6	1.386 (3)	С7—Н7С	0.9600
C2—C3	1.381 (3)	C7—H7A	0.9600
C3—C4	1.359 (4)	С7—Н7В	0.9600
Cl1…N1 ⁱ	3.2015 (17)	C6···C2 ^v	3.578 (3)
Cl1…O1W	3.167 (2)	C7…H1C	2.8800
Cl1…N1 ⁱⁱ	3.1736 (18)	C7…H1B	2.7000
Cl1…O1W ⁱⁱⁱ	3.141 (2)	H1A…Cl1 ^{iv}	2.2900
Cl1···H2W ⁱⁱⁱ	2.42 (3)	H1A…H2	2.2600
Cl1…H1W	2.45 (2)	H1B···C7	2.7000
Cl1…H1A ⁱⁱ	2.2900	H1B…Cl1 ⁱⁱⁱ	2.3900
Cl1…H1B ⁱ	2.3900	H1B…H7A	2.2900
O1W···C1	3.412 (3)	H1C···H7C	2.5900
O1W…Cl1	3.167 (2)	H1C···H2W	2.3200
O1W…N1	2.704 (3)	H1C···C7	2.8800
O1W…Cl1 ⁱ	3.141 (2)	H1C…H1W	2.2900
O1W···H7C	2.8100	H1C…O1W	1.8200
O1W···H1C	1.8200	H1W…H1C	2.2900

N1…O1W	2.704 (3)	H1W…Cl1	2.45 (2)
N1…Cl1 ^{iv}	3.1736 (18)	H2…H1A	2.2600
N1…Cl1 ⁱⁱⁱ	3.2015 (17)	H2W…Cl1 ⁱ	2.42 (3)
N1···H7C	2.8800	H2W…H1C	2.3200
N1···H7A	2.7600	Н5…Н7В	2.4200
C1···O1W	3.412 (3)	H7A…H1B	2.2900
C1···C3 ^v	3.556 (4)	H7A…N1	2.7600
C2···C6 ^v	3.578 (3)	H7B…H5	2.4200
C2···C3 ^{vi}	3.533 (4)	H7C…O1W	2.8100
C3···C2 ^{vi}	3.533 (4)	H7C…N1	2.8800
C3…C1 ^v	3.556 (4)	Н7С…Н1С	2.5900
H1W—O1W—H2W	109 (3)	C5—C6—C7	122.9 (2)
H1B—N1—H1C	109.00	С3—С2—Н2	120.00
C1—N1—H1C	109.00	C1—C2—H2	120.00
C1—N1—H1A	109.00	С2—С3—Н3	120.00
C1—N1—H1B	110.00	С4—С3—Н3	120.00
H1A—N1—H1B	109.00	С5—С4—Н4	120.00
H1A—N1—H1C	109.00	C3—C4—H4	120.00
C2—C1—C6	122.5 (2)	C4—C5—H5	119.00
N1—C1—C6	119.2 (2)	С6—С5—Н5	119.00
N1—C1—C2	118.2 (2)	С6—С7—Н7В	109.00
C1—C2—C3	119.4 (2)	С6—С7—Н7С	109.00
C2—C3—C4	119.7 (3)	С6—С7—Н7А	109.00
C3—C4—C5	120.7 (3)	H7A—C7—H7C	109.00
C4—C5—C6	121.5 (3)	H7B—C7—H7C	109.00
C1—C6—C5	116.2 (2)	H7A—C7—H7B	109.00
C1—C6—C7	120.9 (2)		
N1—C1—C2—C3	-177.9 (2)	C1—C2—C3—C4	0.2 (4)
C6—C1—C2—C3	0.1 (4)	C2—C3—C4—C5	-0.5 (4)
N1-C1-C6-C5	177.9 (2)	C3—C4—C5—C6	0.6 (5)
N1—C1—C6—C7	-3.1 (3)	C4—C5—C6—C1	-0.3 (4)
C2—C1—C6—C5	0.0 (3)	C4—C5—C6—C7	-179.3 (3)
C2-C1-C6-C7	179.0 (2)		

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+1/2; (ii) *x*, -*y*+1/2, *z*-1/2; (iii) -*x*+1, *y*+1/2, -*z*+1/2; (iv) *x*, -*y*+1/2, *z*+1/2; (v) -*x*, -*y*+1, -*z*+1; (vi) -*x*, -*y*, -*z*+1.

Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1A…Cl1 ^{iv}	0.8900	2.2900	3.1736 (18)	170.00
N1—H1B…Cl1 ⁱⁱⁱ	0.8900	2.3900	3.2015 (17)	152.00
N1—H1C···O1W	0.8900	1.8200	2.704 (3)	175.00
O1W—H1W…Cl1	0.72 (3)	2.45 (2)	3.167 (2)	177.9 (14)
O1W—H2W…Cl1 ⁱ	0.76 (3)	2.42 (3)	3.141 (2)	161 (3)
Symmetry codes: (iv) x , $-y+1/2$, $z+1/2$; (iii)	-x+1, y+1/2, -z+1/2; (i)	-x+1, y-1/2, -z+1/2	2.	

Fig. 1

